BIOCHEMISTRY (BS)

Chair: Phillip M. Sheridan, PhD

Introduction

Biochemistry graduates enter a variety of professions, including careers in research and industry, the health professions, teaching, technical writing, business, sales, patent law and civil service. A major in biochemistry is an excellent preparation for entrance into medical, dental and pharmacy schools. It also prepares students to enter a range of graduate programs including biochemistry, biotechnology, bioinformatics, medicinal chemistry, bioengineering, business and law.

The Department of Chemistry and Biochemistry offers two tracks that lead to a BS degree in Biochemistry. They are the Biochemistry BS track certified by the American Chemical Society (BCH track certified by ACS) and Biochemistry BS track designed for students who intend to pursue employment in industry (BCH track). Both BCH tracks are appropriate for pre-health professional students.

Advisors in the Department will help you choose the track that best fits your interests and career plans. Students in both program tracks will gain hands-on experience with a wide variety of modern, sophisticated laboratory instrumentation; this helps provide the experience necessary to be competitive in today’s job market and/or to gain entrance into highly ranked graduate programs.

Both Biochemistry tracks can be completed with a business minor. This option provides a very useful preparation for employment in sales, marketing, or other industrial professions, as well as preparing students for graduate studies in business or administration.

Please go to the Chemistry and Biochemistry website (https://www.canisius.edu/academics/programs/chemistry-and-biochemistry/) for a more detailed description of the program, faculty, facilities, and academic and co-curricular opportunities.

Qualifications

Students must attain the grade of C or greater in General Chemistry II (CHM 112) and C- or greater in Organic Chemistry II (CHM 228) in order to progress into the major. Several two semester courses (CHM 111 and CHM 112, CHM 227 and CHM 228, BCH 301 and BCH 302) have a requirement for a minimum grade of C- in the first course to continue with the second course.

ACADEMIC Advisement

All students have an academic advisor. For students who have declared a major, an advisor is assigned in their respective academic department. For students who are still deciding on a major, they will be assigned a staff member from the Griff Center for Student Success for advisement including course selection prior to registration.

Meetings with academic advisors are required prior to students receiving their PIN for course registration each semester. All students should work closely with their advisor in discussing career expectations, choosing their major electives, developing their entire academic program and planning their co-curricular or supplemental academic experiences.

Major Experiences

Following their freshman year, and sometimes earlier, chemistry and biochemistry majors are encouraged to become involved in research or other professional projects. Stipends are often available so that work can be done on these projects during the summer and school year in the Department. Summer work in industrial laboratories and research institutions is also available. Our close relationship with local industries and institutions aids students in job placement before and after graduation. Students may also choose to undertake industrial internships for advanced elective course credit.

Special Programs Offered by the Department

Early Assurance Program with University at Buffalo Medical School or Syracuse Medical School

Qualified students may apply to the University at Buffalo Medical School or Syracuse University Medical School during their sophomore year. Those accepted will be admitted into the Medical School freshman class after their graduation from Canisius.

Early Assurance Program with University at Buffalo Dental School

Qualified students may apply to the University at Buffalo Dental School during their sophomore year. Those accepted will be admitted into the Dental School freshman class after their graduation from Canisius.

Pre-Medical and Pre-Dental

The Chemistry and Biochemistry BS degrees are excellent preparations for entering into medical and dental schools, and a third of the graduates from this Department enter into these programs. Students applying to medical or dental schools must take the Medical College Admission Test (MCAT) or Dental Admission Test (DAT).

Pre-Pharmacy

For pre-pharmacy students we recommend the Chemistry Health Professions track, since students in this track can meet all pharmacy school entrance requirements. Students applying to most pharmacy schools must take the Pharmacy College Admission Test (PCAT).

Double Majors

Students who wish to expand their educational opportunities may decide to declare a double major. This decision may be based on career goals, planned graduate studies, and/or other student interests. Before a student declares a double major, it is important to meet with the appropriate academic departments for advisement. In order to declare a double major, the student must complete the appropriate double major request form and get the signature of each department chairperson and the appropriate associate dean.

Per college policy, each additional major requires a minimum of 15 credits that do not apply to the student’s first or subsequent major. Some double major combinations can be completed within the minimum 120 credit hour degree requirement, but in other cases additional course work may be required. Please note that students will receive only one degree, regardless of the number of majors they complete. Both (all) majors appear on a student’s transcript.
Minors in Other Disciplines

Minors provide students the opportunity to pursue additional interests but generally do not require as many courses as a major. Minors generally range from five to eight required courses. To receive a minor, the student must complete at least 9 credit hours of coursework distinct from their other credentials (i.e., majors, other minors). The minors page (http://catalog.canisius.edu/undergraduate/minors/) provides a complete list of minors and provides links to each minor. Some majors and minors can be completed within the minimum 120 credit hour degree requirement, but in some cases additional coursework may be required. Students must complete the appropriate minor request form.

Curriculum

An Ignatian Foundation

All undergraduate students must complete either the Canisius Core Curriculum (http://catalog.canisius.edu/undergraduate/academics/core-curriculum/) or the All-College Honors Curriculum (http://catalog.canisius.edu/undergraduate/academics/all-college-honors-program/). Many schools refer to their college-wide undergraduate requirements as “general education” requirements. We believe that the core curriculum and the honors curriculum are more than a series of required classes; they provide the basis for a Jesuit education both with content and with required knowledge and skills attributes that are central to our mission.

Free Electives

Students may graduate with a bachelor’s degree with more but not less than 120 credit hours. Free electives are courses in addition to the Canisius Core Curriculum or All-College Honors Curriculum and major requirements sufficient to reach the minimum number of credits required for graduation. The number of credits required to complete a bachelor’s degree may vary depending on the student’s major(s) and minor(s).

Major Requirements

Biochemistry Major with ACS-certification

Biochemistry BS track certified by the American Chemical Society is recommended for students planning to attend graduate school. This track is also appropriate for students who plan careers in the health professions.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHM 111</td>
<td>General Chemistry I & General Chemistry I Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHM 112</td>
<td>General Chemistry II & General Chemistry II Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHM 227</td>
<td>Organic Chemistry I & Organic Chemistry I Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHM 228</td>
<td>Organic Chemistry II & Organic Chemistry II Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHM 230</td>
<td>Analytical Chemistry & Analytical Chemistry Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHM 244</td>
<td>Inorganic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHM 301</td>
<td>Fundamental Physical Chemistry & Fundamental Physical Chemistry Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHM 302</td>
<td>Modern Physical Chemistry & Modern Physical Chemistry Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 334</td>
<td>Spectrometric Analysis & Spectrometric Analysis Lab</td>
<td>4</td>
</tr>
<tr>
<td>CHM 430</td>
<td>Instrumental Analytical Chemistry & Instrumental Analytical Chemistry Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>CHM 420</td>
<td>Materials Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHM 381</td>
<td>Scientific Literature and Communication</td>
<td>1</td>
</tr>
<tr>
<td>CHM 480</td>
<td>Communicating Concepts in Chemistry</td>
<td>1</td>
</tr>
<tr>
<td>CHM 481</td>
<td>Communicating Research Literature</td>
<td>1</td>
</tr>
<tr>
<td>BCH 301</td>
<td>Introduction to Biochemistry & Introduction to Biochemistry Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>BCH 302</td>
<td>Cellular Biochemistry</td>
<td>3</td>
</tr>
<tr>
<td>BCH 303</td>
<td>Molecular Biology & Molecular Biology Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>BIO 111</td>
<td>Introductory Biology I & Introductory Biology Laboratory I</td>
<td>4</td>
</tr>
<tr>
<td>BIO 112</td>
<td>Introductory Biology II & Introductory Biology Laboratory II</td>
<td>4</td>
</tr>
<tr>
<td>MAT 111</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>MAT 112</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>PHY 223</td>
<td>General Physics for Physical Science Majors I & General Physics for Physical Science Majors I Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>PHY 224</td>
<td>General Physics for Physical Science Majors II & General Physics for Physical Science Majors II Laboratory</td>
<td>4</td>
</tr>
</tbody>
</table>

Total Credits 76

Biochemistry Track

Biochemistry BS track designed for students who intend to pursue employment in industry. This track is also appropriate for students who plan careers in the health professions.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHM 111</td>
<td>General Chemistry I & General Chemistry I Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHM 112</td>
<td>General Chemistry II & General Chemistry II Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHM 227</td>
<td>Organic Chemistry I & Organic Chemistry I Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHM 228</td>
<td>Organic Chemistry II & Organic Chemistry II Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHM 230</td>
<td>Analytical Chemistry & Analytical Chemistry Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHM 244</td>
<td>Inorganic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHM 301</td>
<td>Fundamental Physical Chemistry & Fundamental Physical Chemistry Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHM 302</td>
<td>Modern Physical Chemistry & Modern Physical Chemistry Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 334</td>
<td>Spectrometric Analysis & Spectrometric Analysis Lab</td>
<td>4</td>
</tr>
<tr>
<td>CHM 430</td>
<td>Instrumental Analytical Chemistry & Instrumental Analytical Chemistry Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>CHM 420</td>
<td>Materials Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHM 381</td>
<td>Scientific Literature and Communication</td>
<td>1</td>
</tr>
<tr>
<td>CHM 480</td>
<td>Communicating Concepts in Chemistry</td>
<td>1</td>
</tr>
<tr>
<td>CHM 481</td>
<td>Communicating Research Literature</td>
<td>1</td>
</tr>
<tr>
<td>BCH 301</td>
<td>Introduction to Biochemistry & Introduction to Biochemistry Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>BCH 302</td>
<td>Cellular Biochemistry</td>
<td>3</td>
</tr>
</tbody>
</table>
BCH 403 & 403L Molecular Biology and Molecular Biology Laboratory 4
BIO 111 & 111L Introductory Biology I and Introductory Biology Laboratory I 4
BIO 112 & 112L Introductory Biology II and Introductory Biology Laboratory II 4
MAT 111 Calculus I 4
MAT 112 Calculus II 4
or MAT 141 Inferential Statistics and Computers for Science 4
PHY 201 College Physics I 4
& 201L and College Physics I Laboratory 4
PHY 202 College Physics II 4
& 202L and College Physics II Laboratory 4

Total Credits 70

1 Choose from any 300- or 400-level BCH course not used to fulfill specific major requirements or CHM 334 (if not used to fulfill spectroscopy requirement), CHM 450, CHM 455, BIO 414, BIO 419, BIO 430, or BIO 444.

2 Students minoring in business may take ECO 255 in lieu of MAT 112 or MAT 141.

Roadmap

Recommended Semester Schedule for Major Course Requirements

BCH ACS Certified Track

Freshman
Fall
CHM 111 & 111L
BIO 111 & 111L
MAT 111
Spring
CHM 112 & 112L
BIO 112 & 112L
MAT 112

Sophomore
Fall
CHM 227 & 227L
CHM 244
PHY 223 & 223L
Spring
CHM 228 & 228L
PHY 224 & 224L

Junior
Fall
BCH 301 & 301L
Spring
BCH 302

Senior
Fall
CHM 301 & 301L
CHM 381
Spring
CHM 302 & 302L

BCH Track

Freshman
Fall
CHM 111 & 111L
Spring
CHM 112 & 112L

Sophomore
Fall
CHM 227 & 227L
Spring
CHM 228 & 228L
Learning Goals & Objectives

Student Learning Goal 1:
Knowledge; Demonstrate an understanding of fundamental chemical concepts.
Students will:
• Objective A Demonstrate broad knowledge of chemical concepts.
• Objective B Analyze and predict the effects of chemical changes.

Student Learning Goal 2:
Professional Skills; Work effectively in a professional or laboratory setting.
Students will:
• Objective A Carry out experiments (follow directions, manipulate materials and lab apparatus, record data).
• Objective B Use modern instrumentation (prepare samples, operate systems, troubleshoot common problems, organize and label data).
• Objective C Demonstrate knowledge of chemical, instrumental and workplace safety.

Student Learning Goal 3:
Communication; Be proficient in the communication of chemical information.
Students will:
• Objective A Construct and deliver an effective oral presentation.
• Objective B Write an effective, properly formatted scientific report.
• Objective C Identify, access and use chemical and biochemical literature sources.

Courses

BCH 301 Introduction to Biochemistry 3 Credits
Structure and function of biological molecules. Topics include proteins, carbohydrates, nucleic acids, lipids, enzyme kinetics, ligand binding, recombinant DNA technology and cell membrane structure and transport. Three lectures and one recitation per week.
Prerequisite: minimum grade of C- in CHM 228.
Offered: every fall.

BCH 301L Introduction to Biochemistry Laboratory 1 Credit
One four-hour lab per week.
Prerequisite: BCH 301 (or concurrent registration).
Offered: every fall.

BCH 302 Cellular Biochemistry 3 Credits
The more biological aspects of biochemistry. Topics include signal transduction, bioenergetics, metabolism of carbohydrates, lipids, proteins and metabolic control, emphasizing hormones. Three lectures and one recitation per week.
Prerequisite: minimum grade of C- in BCH 301.
Offered: every spring.

BCH 403 Molecular Biology 3 Credits
Biochemical processes at the cellular and molecular level. Topics include DNA structure in chromosomes, replication, repair, and recombination, DNA transcription, RNA structure and function, protein translation and regulation of these processes.
Prerequisite: minimum grade of C- in BCH 301.
Offered: spring of odd-numbered years.
BCH 403L Molecular Biology Laboratory 1 Credit
One four-hour lab per week.
Prerequisite: BCH 301L & BCH 403 (or concurrent registration in BCH 403).
Fulfills College Core: Advanced Writing-Intensive
Offered: spring of odd-numbered years.

BCH 415 Biochemistry of Viruses 3 Credits
Fundamental biochemical description of the structure and properties of viruses. Topics include different types of viruses, the underlying biochemical principles for host-virus interactions, and how viruses can cause diseases.
Prerequisite: BCH 301.
Offered: spring of even-numbered years.

BCH 450 Research in Biochemistry 3 Credits
Independent research under the direction of the biochemistry faculty. Students are required to spend 9 hours per week conducting research. BCH 450 may be taken in place of a biochemistry elective without lab. Research and consultation times to be arranged after approval of department chair.
Prerequisite: permission of department chair.
Offered: fall & spring.

BCH 451 Research in Biochemistry 4 Credits
Independent research under the direction of the biochemistry faculty. Students are required to spend 12 hours per week conducting research. BCH 451 may be taken in place of a biochemistry elective with lab. Research and consultation times to be arranged after approval of department chair.
Prerequisite: permission of department chair.
Offered: fall & spring.

BCH 499 Independent Study 3 Credits
Independent study under the direction of the biochemistry professor. Independent studies require an application and approval by the associate dean.
Prerequisite: permission of the instructor, department chair, & associate dean.
Offered: fall & spring.