CHEMISTRY (BS)

Chair: Phillip M. Sheridan, PhD

Introduction

Chemistry or Biochemistry graduates enter a variety of professions, including careers in research and industry, the health professions, teaching, technical writing, business, sales, patent law and civil service. A major in chemistry or biochemistry is an excellent preparation for entrance into medical, dental and pharmacy schools. It also prepares students to enter a range of graduate programs including chemistry, biochemistry, biotechnology, bioinformatics, medicinal chemistry, chemical engineering, environmental science, bioengineering, business and law.

The Department of Chemistry and Biochemistry offers three tracks that lead to a BS degree in Chemistry and one track that leads to a BS degree in Chemistry with Business. The three tracks in Chemistry include the Chemistry track that is certified by the American Chemical Society (CHM ACS certified track), Chemistry Health Professions track, and Chemistry track designed for students who intend to pursue technical employment in industry. Chemistry with Business is designed for students who want to pursue administrative or sales careers in the chemical industry. It is an excellent degree for students who want to pursue careers in patent law.

Advisors in the Department will help you choose the track that best fits your interests and career plans. Students in all program tracks will gain hands-on experience with a wide variety of modern, sophisticated laboratory instrumentation; this helps provide the experience necessary to be competitive in today’s job market and/or to gain entrance into highly ranked graduate programs.

All Chemistry tracks can be completed with a business minor. This option provides a very useful preparation for employment in sales, marketing, or other industrial professions, as well as preparing students for graduate studies in business or administration.

Please go to the Chemistry and Biochemistry website (https://www.canisius.edu/academics/programs/chemistry-and-biochemistry/) for a more detailed description of the program, faculty, facilities, and academic and co-curricular opportunities.

Qualifications

Students must attain the grade of C or greater in General Chemistry II (CHM 112) and C- or greater in Organic Chemistry II (CHM 228) in order to progress into the major. Several two-semester courses (CHM 111 and CHM 112, CHM 227 and CHM 228, BCH 301 and BCH 302) have a requirement for a minimum grade of C- in the first course to continue with the second course.

ACADEMIC Advisement

All students have an academic advisor. For students who have declared a major, an advisor is assigned in their respective academic department. For students who are still deciding on a major, they will be assigned a staff member from the Griff Center for Student Success for advisement including course selection prior to registration.

Meetings with academic advisors are required prior to students receiving their PIN for course registration each semester. All students should work closely with their advisor in discussing career expectations, choosing their major electives, developing their entire academic program and planning their co-curricular or supplemental academic experiences.

Special Programs Offered by the Department

Early Assurance Program with University at Buffalo Medical School or Syracuse Medical School

Qualified students may apply to the University at Buffalo Medical School or Syracuse University Medical School during their sophomore year. Those accepted will be admitted into the Medical School freshman class after their graduation from Canisius.

Early Assurance Program with University at Buffalo Dental School

Qualified students may apply to the University at Buffalo Dental School during their sophomore year. Those accepted will be admitted into the Dental School freshman class after their graduation from Canisius.

Pre-Medical and Pre-Dental

The Chemistry and Biochemistry BS degrees are excellent preparations for entering into medical and dental schools, and a third of the graduates from this Department typically enter into these programs. Students applying to medical or dental schools must take the Medical College Admission Test (MCAT) or Dental Admission Test (DAT).

Pre-Pharmacy

For pre-pharmacy students we recommend the CHM Health Professions track, since students in this track can meet all pharmacy school entrance requirements. Students applying to most pharmacy schools must take the Pharmacy College Admission Test (PCAT).

Major Experiences

Following their freshman year, and sometimes earlier, chemistry and biochemistry majors are encouraged to become involved in research or other professional projects. Stipends for qualified students are often available so that work can be done on these projects during the summer and school year in the Department. Summer work in industrial laboratories and research institutions is also available. Our close relationship with local industries and institutions aids students in job placement before and after graduation. Students may also choose to undertake industrial internships for advanced elective course credit.

Double Majors

Students who wish to expand their educational opportunities may decide to declare a double major. This decision may be based on career goals, planned graduate studies, and/or other student interests. Before a student declares a double major, it is important to meet with the appropriate academic departments for advisement. In order to declare a double major, the student must complete the appropriate double major request form and get the signature of each department chairperson and the appropriate associate dean.

Per college policy, each additional major requires a minimum of 15 credits that do not apply to the student’s first or subsequent major. Some double major combinations can be completed within the minimum 120 credit hour degree requirement, but in other cases additional course work may be required. Please note that students will receive only one degree, regardless...
of the number of majors they complete. Both (all) majors appear on a student’s transcript.

Minors in Other Disciplines
Minors provide students the opportunity to pursue additional interests but generally do not require as many courses as a major. Minors generally range from five to eight required courses. To receive a minor, the student must complete at least 9 credit hours of coursework distinct from their other credentials (i.e., majors, other minors). The minors page (http://catalog.canisius.edu/undergraduate/minors/) provides a complete list of minors and provides links to each minor. Some majors and minors can be completed within the minimum 120 credit hour degree requirement, but in some cases additional coursework may be required. Students must complete the appropriate minor request form.

Curriculum
An Ignatian Foundation
All undergraduate students must complete either the Canisius Core Curriculum (http://catalog.canisius.edu/undergraduate/academics/core-curriculum/) or the All-College Honors Curriculum (http://catalog.canisius.edu/undergraduate/academics/core-curriculum/all-college-honors-program/). Many schools refer to their college-wide undergraduate requirements as “general education” requirements. We believe that the core curriculum and the honors curriculum are more than a series of required classes; they provide the basis for a Jesuit education both with content and with required knowledge and skills attributes that are central to our mission.

Free Electives
Students may graduate with a bachelor’s degree with more but not less than 120 credit hours. Free electives are courses in addition to the Canisius Core Curriculum or All-College Honors Curriculum and major requirements sufficient to reach the minimum number of credits required for graduation. The number of credits required to complete a bachelor’s degree may vary depending on the student’s major(s) and minor(s).

Major Requirements
For ACS-certified Chemistry Track
The ACS-certified Chemistry track is recommended for students intending advanced study (pursuing a graduate degree) in Chemistry.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHM 111 & 111L</td>
<td>General Chemistry I and General Chemistry I Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHM 112 & 112L</td>
<td>General Chemistry II and General Chemistry II Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHM 227 & 227L</td>
<td>Organic Chemistry I and Organic Chemistry I Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHM 228 & 228L</td>
<td>Organic Chemistry II and Organic Chemistry II Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHM 230 & 230L</td>
<td>Analytical Chemistry and Analytical Chemistry Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHM 244</td>
<td>Inorganic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHM 301 & 301L</td>
<td>Fundamental Physical Chemistry and Fundamental Physical Chemistry Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHM 302 & 302L</td>
<td>Modern Physical Chemistry and Modern Physical Chemistry Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHM 334 & 334L</td>
<td>Spectrometric Analysis and Spectrometric Analysis Lab</td>
<td>4</td>
</tr>
<tr>
<td>CHM 420 & 420L</td>
<td>Materials Chemistry and Materials Chemistry Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHM 430 & 430L</td>
<td>Instrumental Analytical Chemistry and Instrumental Analytical Chemistry Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHM 381</td>
<td>Scientific Literature and Communication</td>
<td>1</td>
</tr>
<tr>
<td>CHM 480</td>
<td>Communicating Concepts in Chemistry</td>
<td>1</td>
</tr>
<tr>
<td>CHM 481</td>
<td>Communicating Research Literature</td>
<td>1</td>
</tr>
<tr>
<td>CHM 481</td>
<td>Communicating Research Literature</td>
<td>1</td>
</tr>
<tr>
<td>Choose 2 Chemistry or Biochemistry Electives (any 300- or 400-level course)</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits 75

1 Students may use PHY 332 or PHY 226 with lab as a Chemistry Elective.

For Chemistry Track
Chemistry track designed for students who intend to pursue technical employment in industry.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHM 111 & 111L</td>
<td>General Chemistry I and General Chemistry I Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHM 112 & 112L</td>
<td>General Chemistry II and General Chemistry II Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHM 227 & 227L</td>
<td>Organic Chemistry I and Organic Chemistry I Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHM 228 & 228L</td>
<td>Organic Chemistry II and Organic Chemistry II Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHM 230 & 230L</td>
<td>Analytical Chemistry and Analytical Chemistry Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHM 244</td>
<td>Inorganic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHM 301 & 301L</td>
<td>Fundamental Physical Chemistry and Fundamental Physical Chemistry Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHM 334 & 334L</td>
<td>Spectrometric Analysis and Spectrometric Analysis Lab</td>
<td>4</td>
</tr>
<tr>
<td>CHM 430 & 430L</td>
<td>Instrumental Analytical Chemistry and Instrumental Analytical Chemistry Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHM 381</td>
<td>Scientific Literature and Communication</td>
<td>1</td>
</tr>
<tr>
<td>CHM 480</td>
<td>Communicating Concepts in Chemistry</td>
<td>1</td>
</tr>
<tr>
<td>CHM 481</td>
<td>Communicating Research Literature</td>
<td>1</td>
</tr>
<tr>
<td>Choose 3 Chemistry or Biochemistry Electives (any 300- or 400-level course)</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>BCH 301</td>
<td>Introduction to Biochemistry</td>
<td>3</td>
</tr>
<tr>
<td>BIO 111 & 111L</td>
<td>Introductory Biology I and Introductory Biology Laboratory</td>
<td>4</td>
</tr>
</tbody>
</table>
MAT 111 Calculus I 4
MAT 112 Calculus II 4
or MAT 141 Inferential Statistics and Computers for Science

PHY 201 College Physics I 4
& 201L and College Physics I Laboratory

PHY 202 College Physics II 4
& 202L and College Physics II Laboratory

Total Credits 70

1 Students may use PHY 332 or PHY 226 with lab as a Chemistry Elective.
2 Students minoring in business may take ECO 255 in lieu of MAT 112 or MAT 141.

For Chemistry for Health Professions Track

The Health Professions Track is recommended for students preparing for a health-related profession (e.g. Medicine, Dentistry, Physician Assistant, etc.).

Code Title Credits
CHM 111 General Chemistry I 4
& 111L and General Chemistry I Laboratory

CHM 112 General Chemistry II 4
& 112L and General Chemistry II Laboratory

CHM 227 Organic Chemistry I 4
& 227L and Organic Chemistry I Laboratory

CHM 228 Organic Chemistry II 4
& 228L and Organic Chemistry II Laboratory

CHM 301 Fundamental Physical Chemistry 3

Choose a Chemistry or Biochemistry Elective (any 300- or 400-level course in CHM, BCH, BIO, or PHY) 4

Choose one of the following: 4

CHM 381 Scientific Literature and Communication 1

CHM 480 Communicating Concepts in Chemistry 1

CHM 481 Communicating Research Literature 1

Choose a Chemistry or Biochemistry Elective (any 300- or 400-level course in CHM, BCH, BIO, or PHY) with lab 4

Science Elective (choose from CSC 111 or any 300- or 400-level course in CHM, BCH, BIO, or PHY) 3

Science Elective with Lab (choose any 300- or 400-level course in CHM, BCH, BIO, or PHY) 4

BCH 301 Introduction to Biochemistry 3
BCH 302 Cellular Biochemistry 3
BCH 301 & 302L Introduction to Biochemistry Laboratory I 4

BCH 301 & 302L Introduction to Biochemistry Laboratory II 4

MAT 111 Calculus I 4
MAT 112 Calculus II 4
or MAT 141 Inferential Statistics and Computers for Science

PHY 201 College Physics I 4
& 201L and College Physics I Laboratory

PHY 202 College Physics II 4
& 202L and College Physics II Laboratory

Total Credits 77

1 Students minoring in business may take ECO 255 in lieu of MAT 112 or MAT 141.

For Chemistry with Business Track

Chemistry with Business is designed for students who want to pursue administrative or sales careers in the chemical industry. It is also an excellent degree for students who want to pursue careers in patent law.

Code Title Credits
Required Science Courses
CHM 111 General Chemistry I 4
& 111L and General Chemistry I Laboratory

CHM 112 General Chemistry II 4
& 112L and General Chemistry II Laboratory

CHM 227 Organic Chemistry I 4
& 227L and Organic Chemistry I Laboratory

CHM 228 Organic Chemistry II 4
& 228L and Organic Chemistry II Laboratory

CHM 301 Fundamental Physical Chemistry 3

Choose one of the following: 4

CHM 230 Analytical Chemistry 4
& 230L and Analytical Chemistry Laboratory

CHM 334 Spectrometric Analysis 4
& 334L and Spectrometric Analysis Lab

CHM 430 Instrumental Analytical Chemistry 4
& 430L and Instrumental Analytical Chemistry Laboratory

Choose a Chemistry or Biochemistry Elective (any 300- or 400-level course in CHM or BCH course) 4

CHM 381 Scientific Literature and Communication 1

CHM 480 Communicating Concepts in Chemistry 1

BCH 301 Introduction to Biochemistry 4
& 301L and Introduction to Biochemistry Laboratory

BIO 111 Introductory Biology I 4
& 111L and Introductory Biology Laboratory I

BIO 112 Introductory Biology II 4
& 112L and Introductory Biology Laboratory II

MAT 111 Calculus I 4

MAT 112 Calculus II 4
or MAT 141 Inferential Statistics and Computers for Science

PHY 201 College Physics I 4
& 201L and College Physics I Laboratory

PHY 202 College Physics II 4
& 202L and College Physics II Laboratory

Required Business Courses
ACC 201 Financial Accounting 3
ECO 101 Principles of Macroeconomics 3
ECO 102 Principles of Microeconomics 3
FIN 201 Introduction to Corporate Finance 3
MGT 101 Introduction to Management 3
MKT 201 Principles of Marketing 3

Elective
Select one course in business, law, or science 3

Total Credits 77

1 CHM 481 does not satisfy this requirement.
2 Students in this track may take ECO 255 in lieu of MAT 112 or MAT 141.
Choose two courses from the following: CSC 111, IBUS 301, PSC 320, PSC 321, ACC 202, any 200-level or higher ECO course, or any 300- or 400-level course in CHM, BCH, BIO, PHY, MGT, or MKT.

Additional Course Considerations
MAT 211 is highly recommended for students interested in pursuing a PhD degree. In addition, MAT 219 and MAT 222 are highly recommended for students interested in pursuing a PhD degree in physical, inorganic, or analytical chemistry.

Roadmap
Recommended Semester Schedule for Major Course Requirements

CHM ACS Certified Track

<table>
<thead>
<tr>
<th>Freshman</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHM 111</td>
<td>CHM 112 & 111L</td>
<td></td>
</tr>
<tr>
<td>BIO 111 & 111L</td>
<td>MAT 112</td>
<td></td>
</tr>
<tr>
<td>MAT 111</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHM 227 & 227L</td>
<td>CHM 228 & 228L</td>
<td></td>
</tr>
<tr>
<td>CHM 244</td>
<td>CHM 230 & 230L</td>
<td></td>
</tr>
<tr>
<td>PHY 223 & 223L</td>
<td>PHY 224 & 224L</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHM 301 & 301L</td>
<td>CHM 302 & 302L</td>
<td></td>
</tr>
<tr>
<td>CHM 381</td>
<td>CHM 430 & 430L</td>
<td></td>
</tr>
<tr>
<td>MKT 201</td>
<td>CHM 480</td>
<td></td>
</tr>
<tr>
<td>ACC 201</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CHM Track

<table>
<thead>
<tr>
<th>Freshman</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHM 111 & 111L</td>
<td>MAT 112 or 141</td>
<td></td>
</tr>
<tr>
<td>BIO 111 & 111L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAT 111</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHM 227 & 227L</td>
<td>CHM 228 & 228L</td>
<td></td>
</tr>
<tr>
<td>CHM Elective</td>
<td>CHM Elective</td>
<td></td>
</tr>
<tr>
<td>PHY 201 & 201L</td>
<td>PHY 202 & 202L</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCH 301</td>
<td>CHM 302 & 302L</td>
<td></td>
</tr>
<tr>
<td>CHM 481</td>
<td>CHM 480</td>
<td></td>
</tr>
<tr>
<td>ACC 201</td>
<td>CHM 420 & 420L</td>
<td></td>
</tr>
</tbody>
</table>

CHM ACS Certified Track with Business Minor

<table>
<thead>
<tr>
<th>Freshman</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHM 111 & 111L</td>
<td>MAT 112</td>
<td></td>
</tr>
<tr>
<td>BIO 111 & 111L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAT 111</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHM 227 & 227L</td>
<td>CHM 228 & 228L</td>
<td></td>
</tr>
<tr>
<td>CHM Elective</td>
<td>CHM Elective</td>
<td></td>
</tr>
<tr>
<td>PHY 201 & 201L</td>
<td>PHY 202 & 202L</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCH 301</td>
<td>CHM 302 & 302L</td>
<td></td>
</tr>
<tr>
<td>CHM 481</td>
<td>CHM 480</td>
<td></td>
</tr>
<tr>
<td>ACC 201</td>
<td>CHM 420 & 420L</td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>CHM 334 & 334L</td>
<td>CHM Elective</td>
<td></td>
</tr>
<tr>
<td>CHM 481</td>
<td>CHM Elective</td>
<td></td>
</tr>
</tbody>
</table>

CHM Track with Business Minor

Freshman
- **Fall**: CHM 111 & 111L
- **Spring**: CHM 112 & 112L
- **BIO 111 & 111L**: MAT 141 or ECO 255
- **MAT 111**

Sophomore
- **Fall**: CHM 227 & 227L
 - **PHY 201 & 201L**: PHY 202 & 202L
- **Spring**: ECO 102
- **BCH 301**

Junior
- **Fall**: CHM 244
- **Spring**: CHM 381
- **ECO 101**: MGT 101

Senior
- **Fall**: CHM 301 & 301L
 - **CHM 334 & 334L**: CHM Elective
 - **CHM 481**: ACC 201 & MKT 201
- **Spring**: CHM Elective + Lab

CHM Health Professions Track with Business Minor

Freshman
- **Fall**: CHM 111 & 111L
- **Spring**: CHM 112 & 112L
- **BIO 111 & 111L**: BIO 112 & 112L
- **MAT 111**: MAT 141 or ECO 255

Sophomore
- **Fall**: CHM 227 & 227L
 - **PHY 201 & 201L**: PHY 202 & 202L
- **Spring**: ECO 101 & ECO 102
- **BCH 301**

Junior
- **Fall**: CHM 244
- **Spring**: CHM 381 & BCH 302
- **MKT 201**: CHM Elective + Lab

Senior
- **Fall**: CHM 301
 - **CHM 334 & 334L**: CHM Elective + Lab
 - **CHM 481**: ECO 201 & FIN 201
- **Spring**: SCI Elective + Lab

CHM Health Professions Track

Freshman
- **Fall**: CHM 111 & 111L
- **Spring**: CHM 112 & 112L
- **BIO 111 & 111L**: BIO 112 & 112L
- **MAT 111**: MAT 141 or 1141

Sophomore
- **Fall**: CHM 227 & 227L
 - **PHY 201 & 201L**: PHY 202 & 202L
- **Spring**: CHM 230 & 230L

Junior
- **Fall**: BCH 301
- **Spring**: BCH 302 & BCH 302

CHM with Business Track

Freshman
- **Fall**: CHM 111 & 111L
- **Spring**: CHM 112 & 112L
- **BIO 111 & 111L**: BIO 112 & 112L
- **MAT 111**: MAT 141 or 1141

Sophomore
- **Fall**: CHM 227 & 227L
 - **PHY 201 & 201L**: PHY 202 & 202L
- **Spring**: CHM 230 & 230L

Senior
- **Fall**: BCH 301
- **Spring**: BCH 302 & BCH 302
- **ECK 101**: MGT 101
Junior

Fall
- BCH 301
- & 301L

Spring
- CHM 480

CHM 381

ACC 201

Major Elective

MKT 201

Senior

Fall
- CHM 301

Spring
- BCH or CHM Elective

FIN 201

Major Elective

1 Choose one of the following analytical/instrumental courses with its associated laboratory: CHM 230, CHM 334, or CHM 430.

2 Choose two courses in business, law, or science: a 300 level course or higher in MGT, ACC 202, ECO 102 or a 200 level course or higher in ECO, IBUS 301, PSC 320, PSC 321, a 300 or 400 level course in CHM, BCH, BIO, or PHY, or CSC 111.

Learning Goals & Objectives

Student Learning Goal 1:
Knowledge; Demonstrate an understanding of fundamental chemical concepts.

Students will:
- Objective A Demonstrate broad knowledge of chemical concepts.
- Objective B Analyze and predict the effects of chemical changes.

Student Learning Goal 2:
Professional Skills; Work effectively in a professional or laboratory setting.

Students will:
- Objective A Carry out experiments (follow directions, manipulate materials and lab apparatus, record data).
- Objective B Use modern instrumentation (prepare samples, operate systems, troubleshoot common problems, organize and label data).
- Objective C Demonstrate knowledge of chemical, instrumental and workplace safety.

Student Learning Goal 3:
Communication; Be proficient in the communication of chemical information.

Students will:
- Objective A Construct and deliver an effective oral presentation.
- Objective B Write an effective, properly formatted scientific report.
- Objective C Identify, access and use chemical literature sources.

Minor

Students majoring in various disciplines such as biology, mathematics, physics, bioinformatics, computer science, psychology and business can benefit from pursuing a minor in chemistry. The chemistry minor requires a student to complete the following sequence of courses:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHM 112</td>
<td>General Chemistry II & General Chemistry II Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHM 227</td>
<td>Organic Chemistry I & Organic Chemistry I Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHM 228</td>
<td>Organic Chemistry II & Organic Chemistry II Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHM 230</td>
<td>Analytical Chemistry & Analytical Chemistry Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHM 334</td>
<td>Spectrometric Analysis & Spectrometric Analysis Lab</td>
<td>3</td>
</tr>
<tr>
<td>CHM 430</td>
<td>Instrumental Analytical Chemistry & Instrumental Analytical Chemistry Laboratory</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits 26

1 CHM 381, CHM 480, or CHM 481 individually do not satisfy this requirement.

Minors are an important part of the undergraduate curriculum. If students declare a minor by sophomore year, they can usually complete it in a timely manner. Students should work with their advisor to determine if it is possible that the minor can be completed by graduation.

To receive a minor, a student must complete at least 9 credit hours of coursework distinct from their major(s) and from other minors, and students must complete more than 50% of the coursework required for the minor at Canisius. Please note that “ancillary/supporting” courses required for a major may still count as distinct courses as long as the remaining coursework still meets the 30 credit-hours required for a major. For more information about minor policies, please see the Declaring Majors and Minors (http://catalog.canisius.edu/undergraduate/academics/student-records/declaring-majors-minors/) page in the catalog.

Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHM 104</td>
<td>Energy, Environment, and Society</td>
<td>3</td>
</tr>
</tbody>
</table>

Designed to provide a better understanding of energy and our environment, including man's interaction with his environment and the consequences facing society today.

Fulfills College Core: Field 6 (Natural Sciences), Global Awareness

Offered: every fall.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHM 109</td>
<td>General Chemistry I with Review - Part I</td>
<td>3</td>
</tr>
</tbody>
</table>

General Chemistry I for science majors, Part I. This course reviews some mathematical concepts, emphasizes dimensional analysis, inorganic nomenclature, stoichiometry, solutions, basic chemical reactions, and thermochemistry. Three lectures and one recitation per week.

Fulfills College Core: Field 6 (Natural Sciences)

Offered: every fall.
CHM 110 General Chemistry I with Review - Part II 3 Credits
General Chemistry I for science majors, Part II, three lectures, one laboratory, and one recitation per week. This course emphasizes atomic and molecular structure, periodic properties, gas laws, and states of matter. The CHM 109 and CHM 110 sequence is equivalent to CHM 111 and a free elective. Students completing the CHM 109 and CHM 110 sequence are eligible to take CHM 112.
Prerequisite: minimum grade of C- in CHM 109. Corequisite: CHM 111L. Offered: every fall.
CHM 111 General Chemistry I 3 Credits
General Chemistry I for science majors. Inorganic nomenclature, stoichiometry, solutions, basic chemical reactions, thermochromy, atomic and molecular structure, periodic properties, gas laws, and states of matter. Three lectures and one recitation per week.
Corequisite: CHM 111L.
Fulfills College Core: Field 6 (Natural Sciences)
Offered: every fall.
CHM 111L General Chemistry I Laboratory 1 Credit
Covers techniques of measurements, decantation, and filtration; use of a data acquisition system with temperature probe, pressure sensor, and spectrophotometer; analysis of data and developing a conclusion based on data trends. One three-hour lab per week.
Corequisite: CHM 110 or CHM 111.
Offered: every fall.
CHM 112 General Chemistry II 3 Credits
General Chemistry II for science majors. Properties of solutions (including colligative properties), kinetics, chemical equilibrium concepts, calculations involving acid/base and precipitation equilibria, thermodynamics (second and third law), electrochemistry, nuclear chemistry, and chemistry of the environment. A minimum grade of C in CHM 112 is required for all chemistry and biochemistry majors. Three lectures and one recitation per week.
Prerequisite: minimum grade of C- in either CHM 110 or CHM 111.
Corequisite: CHM 112L.
Fulfills College Core: Field 6 (Natural Sciences)
Offered: every spring.
CHM 112L General Chemistry II Laboratory 1 Credit
Builds on techniques developed in CHM 111L, and covers solution dilution, titration, pipetting, and use of a pH electrode and current probe. One three-hour lab per week.
Prerequisite: minimum grade of C- in CHM 111L. Corequisite: CHM 112.
Offered: every spring.
CHM 227 Organic Chemistry I 3 Credits
Fundamental treatment of organic chemistry. Bonding, structure, nomenclature, and stereochemistry of organic functional groups. Mechanisms and reactivity in substitution and elimination reactions. Three lectures and one recitation per week.
Prerequisite: minimum grade of C- in either CHM 110 or CHM 111.
Corequisite: CHM 227L.
Offered: every fall.
CHM 227L Organic Chemistry I Laboratory 1 Credit
One four-hour lab per week. Techniques for synthesis, separation, purification, and analysis of organic compounds.
Prerequisite: minimum grade of C- in CHM 111L. Corequisite: CHM 227. Offered: every fall.
CHM 228 Organic Chemistry II 3 Credits
Continuation of organic chemistry. Chemistry and reaction mechanisms of unsaturated compounds, and oxygen and nitrogen-containing functional groups. Introduction to the organic chemistry of carbohydrates, lipids and peptides. Three lectures and one recitation per week.
Prerequisite: minimum grade of C- in CHM 227. Corequisite: CHM 228L. Offered: every spring.
CHM 228L Organic Chemistry II Laboratory 1 Credit
One four hour lab per week. Expands on techniques for synthesis, separation, purification, and analysis of organic compounds.
Prerequisite: minimum grade of C- in CHM 227L. Corequisite: CHM 228. Offered: every spring.
CHM 230 Analytical Chemistry 3 Credits
Principles and methodology of modern analytical chemistry presented with particular emphasis on statistical error analysis, titrations, solution equilibrium, and potentiometry. Three lectures and one recitation per week.
Prerequisite: minimum grade of C in CHM 112. Corequisite: CHM 230L. Offered: spring of even-numbered years.
CHM 230L Analytical Chemistry Laboratory 1 Credit
One four-hour lab per week. Fundamental techniques of quantitative analysis including titrations in multiple reaction paradigms, potentiometry, absorption spectrometry, and separation technologies.
Prerequisite: minimum grade of C- in CHM 112L. Corequisite: CHM 230. Offered: spring of even-numbered years.
CHM 232 Environmental Analytical Chemistry 3 Credits
Environmental applications of analytical chemistry. Sampling techniques and statistical analysis of data. Soil chemistry, aquatic chemistry and atmospheric chemistry. Trace analysis with electroanalytical, liquid and gas chromatography, atomic absorption spectrometry and ion selective electrodes. Three lectures and one recitation per week.
CHM 232L Environmental Analytical Chemistry Laboratory 1 Credit
One four-hour lab per week.
CHM 244 Inorganic Chemistry 3 Credits
Electronic configuration of atoms, periodic classification of the elements, nature of chemical bonding, symmetry and application of group theory to molecular orbitals, structures and thermodynamics of solids, bonding in metals and semiconductors, acid/base concepts, electrochemistry, isomerism, bonding, reactions and spectroscopy of coordination compounds, and other aspects of modern inorganic chemistry. Three lectures and one recitation per week.
Prerequisite: minimum grade of C in CHM 112. Offered: every fall.
CHM 301 Fundamental Physical Chemistry 3 Credits
Fundamental topics in thermodynamics, kinetics, and quantum chemistry. Three lectures and one recitation per week.
Prerequisite: minimum grade of C in CHM 112, successful completion of MAT 111 or MAT 110, and a year of physics (PHY 201 & PHY 202 or PHY 223 & PHY 224).
Offered: every fall.
CHM 301L Fundamental Physical Chemistry Laboratory 1 Credit
Selected experiments demonstrating principles of thermodynamics and chemical kinetics. One four-hour lab per week.
Prerequisite: minimum grade of C in CHM 230L & C in CHM 301 (or currenct registration in CHM 301).
Fulfills College Core: Advanced Writing-Intensive
Offered: fall of even-numbered years.

CHM 302 Modern Physical Chemistry 3 Credits
Introduction to quantum chemistry with applications to the structure of atoms and molecules. Molecular spectroscopy. Three lectures and one recitation per week.
Prerequisite: minimum grade of C in CHM 112, CHM 244, successful completion of MAT 111 or MAT 110, MAT 112, a year of physics (PHY 201 & PHY 202 or PHY 223 & PHY 224).
Offered: spring of even-numbered years.

CHM 302L Modern Physical Chemistry Laboratory 1 Credit
Selected spectroscopy experiments with applications to molecular structure. One four-hour lab per week.
Prerequisite: CHM 302 (or concurrent registration in CHM 302) & minimum grade of C in CHM 230L, CHM 301L, CHM 334L or CHM 430L.
Offered: spring of even-numbered years.

CHM 334 Spectrometric Analysis 3 Credits
Spectrometric methods for the elucidation of chemical structures. Includes nuclear magnetic resonance, infrared, ultraviolet and mass spectrometry. Emphasis on organic compounds. Three lectures per week.
Prerequisite: CHM 228.
Offered: every fall.

CHM 334L Spectrometric Analysis Lab 1 Credit
One four-hour lab per week. Nuclear magnetic resonance, infrared, ultraviolet and mass spectrometry of organic compounds.
Prerequisite: CHM 228L.
Offered: every fall.

CHM 344 Metal Ions in Biological Systems 3 Credits
Chemical processes in biological systems, which include participation of metal ions, are covered. The course begins with the principles of coordination chemistry and structural biochemistry. The rest of the course is organized according to the functions performed by the metal centers: gene expression and signal transduction, digestion, bioenergetics and electron transfer, oxygen transport, liver functions and anticancer drugs.
Prerequisite: CHM 228.
Offered: occasionally.

CHM 381 Scientific Literature and Communication 1 Credit
First of three student-faculty seminars for majors. Introduces scientific literature, technical writing and oral communication in chemistry and allied fields.
Prerequisite: CHM 228 & junior standing.
Offered: every fall.

CHM 420L Materials Chemistry Laboratory 1 Credit
This laboratory develops concepts introduced in the lecture component of Materials Chemistry, CHM420, including solid-state structure, mechanical properties, semiconductors, polymers, and nanomaterials. The lab meets for four hours per week.
Prerequisite: CHM 228L (may be taken concurrently). Corequisite: CHM 420.
Offered: anticipated spring 2023.

CHM 430 Instrumental Analytical Chemistry 3 Credits
Advanced instrumental methods of analysis including spectroscopy, chromatography and various electrochemical techniques. Three lectures per week.
Prerequisite: CHM 112 & CHM 228 (or concurrent registration in CHM 228).
Offered: spring of odd-numbered years.

CHM 430L Instrumental Analytical Chemistry Laboratory 1 Credit
One four-hour lab per week. Atomic absorption spectroscopy, chromatography and various electrochemical techniques
Prerequisite: CHM 112L & CHM 228L (or concurrent registration in CHM 228L). Corequisite: CHM 430.
Offered: spring of odd-numbered years.

CHM 450 Research in Chemistry 3 Credits
Independent research under the direction of the chemistry faculty. Students are required to spend 9 hours per week conducting research. CHM 450 may be taken in place of a chemistry elective without lab. Research and consultation times to be arranged after approval of department chair.
Prerequisite: permission of department chair.
Offered: fall & spring.

CHM 451 Research in Chemistry 4 Credits
Independent research under the direction of the chemistry faculty. Students are required to spend 12 hours per week conducting research. CHM 451 may be taken in place of a chemistry elective with lab. Research and consultation times to be arranged after approval of department chair.
Prerequisite: permission of department chair.
Offered: fall & spring.

CHM 455 Medicinal Chemistry 3 Credits
Chemical principles are used to explain the interaction of drugs with biological targets. Strategies used in the design and development of medicines are discussed.
Prerequisite: minimum grade of C- in both CHM 228 & BCH 301.
Offered: spring of even-numbered years.

CHM 480 Communicating Concepts in Chemistry 1 Credit
Second of three student-faculty seminars for majors. Students give a 25-minute presentation on an advanced coursework topic. Emphasis is placed on the process and the mechanics of constructing a scientific talk.
Prerequisite: CHM 228, CHM 381, & junior standing.
Offered: every spring.

CHM 481 Communicating Research Literature 1 Credit
Third of three student-faculty seminars for majors. Students give a 45-minute presentation on a scientific work from the chemical literature. Emphasis is placed on constructing a narrative and gaining a working understanding of the scientific issues in the presented paper.
Prerequisite: CHM 228, CHM 381, & junior standing.
Fulfills College Core: Oral Communication
Offered: every fall.
Undergraduate Courses

Major Requirements depending on the student's major(s) and minor(s).
The number of credits required to complete a bachelor's degree may vary
sufficient to reach the minimum number of credits required for graduation.
The Core Curriculum or All-College Honors Curriculum and major requirements
than 120 credit hours. Free electives are courses in addition to the Canisius
Students may graduate with a bachelor's degree with more but not less

Free Electives

Students may graduate with a bachelor's degree with more but not less
than 120 credit hours. Free electives are courses in addition to the Canisius Core Curriculum or All-College Honors Curriculum and major requirements sufficient to reach the minimum number of credits required for graduation. The number of credits required to complete a bachelor's degree may vary depending on the student’s major(s) and minor(s).

Curriculum

An Ignatian Foundation

All undergraduate students must complete either the Canisius Core Curriculum (http://catalog.canisius.edu/undergraduate/academics/curricular-information/core-curriculum/) or the All-College Honors Curriculum (http://catalog.canisius.edu/undergraduate/academics/curricular-information/all-college-honors-program/). Many schools refer to their college-wide undergraduate requirements as ‘general education’ requirements. We believe that the core curriculum and the honors curriculum are more than a series of required classes; they provide the basis for a Jesuit education both with content and with required knowledge and skills attributes that are central to our mission.

Free Electives

Students may graduate with a bachelor's degree with more but not less
than 120 credit hours. Free electives are courses in addition to the Canisius Core Curriculum or All-College Honors Curriculum and major requirements sufficient to reach the minimum number of credits required for graduation. The number of credits required to complete a bachelor's degree may vary depending on the student’s major(s) and minor(s).

Major Requirements

Undergraduate Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Science Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 111 & 111L</td>
<td>General Chemistry I and General Chemistry I Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHM 112 & 112L</td>
<td>General Chemistry II and General Chemistry II Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHM 227 & 227L</td>
<td>Organic Chemistry I and Organic Chemistry I Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHM 228 & 228L</td>
<td>Organic Chemistry II and Organic Chemistry II Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHM 244</td>
<td>Inorganic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHM 301</td>
<td>Fundamental Physical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHM 230 & 230L</td>
<td>Analytical Chemistry and Analytical Chemistry Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHM 381</td>
<td>Scientific Literature and Communication</td>
<td>1</td>
</tr>
<tr>
<td>CHM 480</td>
<td>Communicating Concepts in Chemistry</td>
<td>1</td>
</tr>
<tr>
<td>BCH 301 & 301L</td>
<td>Introduction to Biochemistry and Introduction to Biochemistry Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry or Biochemistry Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BIO 111 & 111L</td>
<td>Introductory Biology I and Introductory Biology Laboratory I</td>
<td>4</td>
</tr>
<tr>
<td>BIO 112 & 112L</td>
<td>Introductory Biology II and Introductory Biology Laboratory II</td>
<td>4</td>
</tr>
<tr>
<td>MAT 111</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>MAT 141</td>
<td>Inferential Statistics and Computers for Science</td>
<td>4</td>
</tr>
<tr>
<td>PHY 201 & 201L</td>
<td>College Physics I and College Physics I Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>PHY 202 & 202L</td>
<td>College Physics II and College Physics II Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>Required Education Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDS 101</td>
<td>Human Growth and Social Development: Adolescence</td>
<td>3</td>
</tr>
<tr>
<td>EDS 223</td>
<td>Foundations of Adolescent Literacy</td>
<td>3</td>
</tr>
<tr>
<td>EDS 360</td>
<td>Evaluation and Teaching Strategies</td>
<td>3</td>
</tr>
<tr>
<td>EDS 405</td>
<td>Methods of Teaching Science: Adolescence</td>
<td>3</td>
</tr>
<tr>
<td>EDU 250</td>
<td>Foundations of Education</td>
<td>3</td>
</tr>
<tr>
<td>EDU 356</td>
<td>Assessment for Diverse Learners</td>
<td>3</td>
</tr>
<tr>
<td>SPE 311</td>
<td>Nature/Needs of Childhood Students with Intellectual Disabilities & Autism Spectrum Disorders</td>
<td>3</td>
</tr>
<tr>
<td>SPE 341</td>
<td>Inclusive Strategies</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits</td>
<td>83</td>
<td></td>
</tr>
</tbody>
</table>

Please note, two math, two science, and two history courses are needed for SWD certification. Candidates also need to take 3 credit hours in a LOTE (Language other than English).

Graduate Courses

The education curriculum is provided below for the graduate MSed portion of the dual degree program. Several foundation courses are taken at the undergraduate level listed above with the requirements for the history major. The graduate courses begin at the 500 level and continue until completion. These courses can be taken during a student’s senior year. Refer to the roadmap for further details.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDU 556 or EDU 356</td>
<td>Assessment for Diverse Learners</td>
<td>3</td>
</tr>
<tr>
<td>EDU 595</td>
<td>Child Abuse Workshop</td>
<td>0</td>
</tr>
<tr>
<td>EDU 596</td>
<td>Prevention of School Violence Workshop</td>
<td>0</td>
</tr>
<tr>
<td>EDU 597</td>
<td>Dignity for All Students Workshop</td>
<td>0</td>
</tr>
<tr>
<td>EDU 615</td>
<td>Research Methods</td>
<td>3</td>
</tr>
<tr>
<td>SPE 580</td>
<td>Classroom Management</td>
<td>3</td>
</tr>
<tr>
<td>SPE 631</td>
<td>Reading and Writing Process for Students with Learning and Behavioral Disorders</td>
<td>3</td>
</tr>
<tr>
<td>SPE 640</td>
<td>Learning and Behavioral Disabilities (LBD); Etiology and Research Based Interventions</td>
<td>3</td>
</tr>
<tr>
<td>SPE 644</td>
<td>Collaborative Practices on a Transdisciplinary Team</td>
<td>3</td>
</tr>
</tbody>
</table>
These courses may be taken at either the undergraduate or graduate level. The graduate level courses are recommended for those students coming into this program during their junior year.

Roadmap

Freshman

Fall
CHM 111 & 111L
BIO 111 & 111L
MAT 111

Spring
CHM 112 & 112L
BIO 112 & 112L
MAT 141

Sophomore

Fall
CHM 227 & 227L
PHY 201 & 201L
EDS 101
EDU 250

Spring
CHM 228 & 228L
PHY 202 & 202L
SPE 341
HIS

Junior

Fall
BCH 301 & 301L
CHM 244
CHM 381
EDS 223
EDS 360

Spring
CHM 230 & 230L
CHM/BCH Elective
CHM 480
EDS 405

Senior

Fall
CHM 301
SPE 311
EDU 356
SPE 644

Spring
SPE 649
SPE 615
EDU 595
EDU 596

Fifth Year

Fall
SPE 580
SPE 631
SPE 640

Spring
EDU 595
EDU 596
EDU 597