Mathematics (BA)

Chair: Byung-Jay Kahng, PhD

Introduction

The Department of Mathematics and Statistics strives to transmit an understanding and appreciation of mathematics: its substance, its applicability, its literature, its current directions and problems, its historical development, its human worth and values; and to promote the development of skill in the practice of mathematics. For a more detailed description of the program, faculty, facilities, academic and co-curricular opportunities please go to the Mathematics and Statistics website (https://www.canisius.edu/academics/programs/mathematics/).

Qualifications

Students must maintain a 2.0 GPA in their major and a 2.0 overall average to graduate with a degree in Mathematics and Statistics. Students must have a minimum grade of C- in all courses in the major.

Advisement

All students should have an advisor in the major and should contact the department directly to have an advisor assigned if they do not already have one. Meetings with academic advisors are required prior to students receiving their PIN for course registration each semester. All majors should work closely with their advisor in discussing career expectations, choosing their major electives, developing their entire academic program and planning their co-curricular or supplemental academic experiences.

Double Majors

Students who wish to expand their educational opportunities may decide to declare a double major. This decision may be based on career goals, planned graduate studies, and/or other student interests. Before a student declares a double major, it is important to meet with the appropriate academic departments for advisement. In order to declare a double major, the student must complete the appropriate double major request form and get the signature of each department chairperson and the appropriate associate dean.

Per college policy, each additional major requires a minimum of 15 credits that do not apply to the student's first or subsequent major. Some double major combinations can be completed within the minimum 120 credit hour degree requirement, but in other cases additional coursework may be required. Please note that students will receive only one degree, regardless of the number of majors they complete.

Popular double majors with mathematics are economics, computer science, education, and physics, but we have also had students double major in math and music, English, political science, philosophy, Spanish, psychology, pre-medicine, and other fields.

Minors in Other Disciplines

Minors provide students the opportunity to pursue additional interests but generally do not require as many courses as a major. Minors generally range from five to eight required courses. To receive a minor, the student must complete at least 9 credit hours of coursework distinct from their other credentials (i.e., majors, other minors). The minors page (http://catalog.canisius.edu/undergraduate/minors/) provides a complete list of minors and provides links to each minor. Some majors and minors can be completed within the minimum 120 credit hour degree requirement, but in some cases additional coursework may be required. Students must complete the appropriate minor request form.

Curriculum

An Ignatian Foundation

All undergraduate students must complete either the Canisius Core Curriculum (http://catalog.canisius.edu/undergraduate/academics/curricular-information/core-curriculum/) or the All-College Honors Curriculum (http://catalog.canisius.edu/undergraduate/academics/curricular-information/all-college-honors-program/). Many schools refer to their college-wide undergraduate requirements as “general education” requirements. We believe that the core curriculum and the honors curriculum are more than a series of required classes; they provide the basis for a Jesuit education both with content and with required knowledge and skills attributes that are central to our mission.

Free Electives

Students may graduate with a bachelor’s degree with more but not less than 120 credit hours. Free electives are courses in addition to the Canisius Core Curriculum or All-College Honors Curriculum and major requirements sufficient to reach the minimum number of credits required for graduation. The number of credits required to complete a bachelor’s degree may vary depending on the student’s major(s) and minor(s).

Major Requirements

Option A (Mathematics Major)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAT 111</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>MAT 112</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>MAT 211</td>
<td>Calculus III</td>
<td>4</td>
</tr>
<tr>
<td>MAT 219</td>
<td>Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>MAT 222</td>
<td>Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>or MAT 351</td>
<td>Probability & Statistics I</td>
<td></td>
</tr>
<tr>
<td>MAT 230</td>
<td>Logic, Set Theory, and Proofs</td>
<td>4</td>
</tr>
<tr>
<td>MAT 311</td>
<td>Abstract Algebra</td>
<td>4</td>
</tr>
<tr>
<td>MAT 321</td>
<td>Real Analysis</td>
<td>4</td>
</tr>
<tr>
<td>MAT 380</td>
<td>Mathematics Seminar</td>
<td>1</td>
</tr>
<tr>
<td>MAT 381</td>
<td>Mathematics Seminar</td>
<td>1</td>
</tr>
<tr>
<td>MAT 480</td>
<td>Mathematics Seminar</td>
<td>1</td>
</tr>
</tbody>
</table>

Select one of the following: 3

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAT 312</td>
<td>Topics in Algebra</td>
</tr>
<tr>
<td>MAT 322</td>
<td>Topics in Analysis</td>
</tr>
<tr>
<td>MAT 352</td>
<td>Probability & Statistics II</td>
</tr>
<tr>
<td>MAT 421</td>
<td>Complex Analysis</td>
</tr>
</tbody>
</table>

Select four courses from the following: 12-16

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHY 335</td>
<td>Mathematical Analysis for Physicists</td>
</tr>
<tr>
<td>PHY 446</td>
<td>Quantum Mechanics I</td>
</tr>
</tbody>
</table>

Choose one of the following two sequences: 6-8

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHY 201, PHY 201L, PHY 202, and PHY 202L</td>
<td>General Physics for Physical Science Majors</td>
</tr>
</tbody>
</table>

Any two Economics (ECO) classes

Total Credits 55-61
Option B (Mathematics with a Concentration in Another Area)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAT 111</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>MAT 112</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>MAT 211</td>
<td>Calculus III</td>
<td>4</td>
</tr>
<tr>
<td>MAT 219</td>
<td>Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>MAT 222</td>
<td>Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>or MAT 351</td>
<td>Probability & Statistics I</td>
<td></td>
</tr>
<tr>
<td>MAT 230</td>
<td>Logic, Set Theory, and Proofs</td>
<td>4</td>
</tr>
<tr>
<td>MAT 311</td>
<td>Abstract Algebra</td>
<td>4</td>
</tr>
<tr>
<td>MAT 321</td>
<td>Real Analysis</td>
<td>4</td>
</tr>
<tr>
<td>MAT 380</td>
<td>Mathematics Seminar</td>
<td>1</td>
</tr>
<tr>
<td>MAT 381</td>
<td>Mathematics Seminar</td>
<td>1</td>
</tr>
<tr>
<td>MAT 480</td>
<td>Mathematics Seminar</td>
<td>1</td>
</tr>
</tbody>
</table>

Select one of the following: 3
- MAT 312 Topics in Algebra
- MAT 322 Topics in Analysis
- MAT 352 Probability & Statistics II
- MAT 421 Complex Analysis

Select two of the following: 6-8
- any additional 300 or 400-level mathematics courses
- PHY 335 Mathematical Analysis for Physicists
- PHY 446 Quantum Mechanics I

Choose one of the following two sequences: 6-8
- Any two Economics (ECO) classes
- General Physics for Physical Science Majors (PHY 201, PHY 201L, PHY 202, and PHY 202L)

Four courses in another area approved by the Department of Mathematics and Statistics 12

Total Credits 61-65

Roadmap

Recommended Semester Schedule for Major Courses

Option A

Freshman
- Fall: MAT 111
- Spring: MAT 112
- PHY 223 (or ECO course)
- PHY 224 (or ECO course)

Sophomore
- Fall: MAT 211
- Spring: MAT 219
- MAT 230
- MAT 222 or 351

Junior
- Fall: MAT 311
- Spring: MAT 381
- MAT 321
- MAT elective
- MAT 380

Senior
- Fall: MAT 480
- Spring: Select one of the following
 - MAT elective
 - MAT 312
 - MAT 322
 - MAT 352 (MAT352 is typically offered in the fall semester.)
 - MAT 421

Option B

Freshman
- Fall: MAT 111
- Spring: MAT 112
- PHY 223 (or ECO course)
- PHY 224 (or ECO course)

Sophomore
- Fall: MAT 211
- Spring: MAT 219
- MAT 230
- MAT 222 or 351

Junior
- Fall: MAT 311
- Spring: MAT 381
- MAT 321
- MAT elective
- MAT 380

Senior
- Fall: MAT 480
- Spring: Select one of the following
 - MAT elective
 - MAT 312
 - MAT 322
 - MAT 352 (MAT352 is typically offered in the fall semester.)
 - MAT 421

Additional Course Considerations

Option A is designed to prepare the student for positions in which mathematical competence is sought, as well as for advanced study in graduate school.

Option B allows the student to develop expertise in another area besides mathematics. Many students combine this option with a major or minor in another department. Students interested in education can get a dual major to give them a strong background in mathematics while fulfilling the requirements of the School of Education.

Option C prepares the student for advanced work or graduate study and the many careers which utilize statistical thinking. This option, together with appropriate courses in business, constitutes a good preparation for a career in actuarial science.
Option C
Freshman
Fall Spring
MAT 111 MAT 112
PHY 223 (or ECO course) PHY 224 (or ECO course)

Sophomore
Fall Spring
MAT 211 MAT 219
MAT 230 MAT 351

Junior
Fall Spring
MAT 321 MAT 381
MAT 352 Select one of the following statistics electives:
 MAT 353
 MAT 354
MAT 380 MAT 222 (or MAT elective)

Senior
Fall Spring
MAT 480 Select one of the following statistics electives:
MAT elective MAT 353
 MAT 354
Select one of the following ("restricted elective"):
MAT 311 (MAT 311 is typically offered in the fall semester.)
MAT 322
MAT 421

Learning Goals & Objectives

Student Learning Goal 1:
Mathematics majors will perform tasks requiring logical reasoning.

Students will:
• Objective A: Understand the different types of mathematical statements and how they are used, including definitions, axioms, hypotheses, conclusions, theorems, corollaries, lemmata, and conjectures;
• Objective B: Understand methods of proof.

Student Learning Goal 2
Mathematics majors will know the content of the fundamental fields of mathematics and can perform tasks requiring complex reasoning.

Students will:
• Objective A: Use basic skills to manipulate expressions;
• Objective B: Know the basic definitions and theorems of mathematics;
• Objective C: Be able to perform tasks requiring complex reasoning.

Student Learning Goal 3
Mathematics majors will advance their understanding and knowledge of mathematics and their ability to convey mathematical concepts through currently available technology.

Students will:
• Objective A (Information Literacy): Use the internet and/or library resources to obtain relevant information concerning historical information or mathematical content in regards to current course or project. Students will be expected to both look up sources and learn to search for their own sources;
• Objective B (Computation): Use computers or graphing calculators to perform labor-intensive calculations and/or create graphical displays. Programs include, but are not limited to, Excel, Minitab (or other statistical software), and Mathematica (or other software);
• Objective C (Presentation): Use technology for the purpose of elegantly presenting mathematical ideas, theories or results. Technologies include PowerPoint, Prezzi, Jing, Beamer, Latex, Word, and graphical tools.

Student Learning Goal 4
Mathematics majors will communicate mathematical ideas with precision and clarity.

Students will:
• Objective A: Present mathematical material in writing;
• Objective B: Present mathematical material orally.

Minor

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAT 111</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>or MAT 115</td>
<td>Calculus for Business</td>
<td></td>
</tr>
<tr>
<td>MAT 112</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>MAT 211</td>
<td>Calculus III</td>
<td>4</td>
</tr>
<tr>
<td>MAT 219</td>
<td>Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>MAT 230</td>
<td>Logic, Set Theory, and Proofs</td>
<td>4</td>
</tr>
</tbody>
</table>

Restricted Electives
Select one of the following tracks and take two of the courses in that track:

Probability and Statistics:
• MAT 351 Probability & Statistics I
• MAT 352 Probability & Statistics II

Applied Mathematics:
• MAT 222 Differential Equations
• MAT 341 Numerical Analysis
• MAT 342 Graph Theory
• MAT 345 Climate and Sustainability
• PHY 335 Mathematical Analysis for Physicists

Theoretical Mathematics:
• MAT 311 Abstract Algebra
• MAT 312 Topics in Algebra
• MAT 321 Real Analysis
• MAT 322 Topics in Analysis
• MAT 421 Complex Analysis

Mathematics and Culture:
• MAT 301 History of Mathematics
Courses

MAT 105 Finite Mathematics
Introduction to finite (non-calculus) mathematics and its applications: linear, quadratic, exponential and logarithmic functions and equations; systems of linear equations and linear programming; compound interest problems and annuities.
Fulfills College Core: Field 7 (Mathematical Sciences)
Offered: every fall & spring.

MAT 106 Calculus for the Non-Sciences
Fundamentals of calculus for students in business, or social or behavioral sciences. Credit not allowed if student already has credit for MAT 109 & MAT 110; or MAT 111 or MAT 115.
Fulfills College Core: Field 7 (Mathematical Sciences)
Offered: every fall, spring, & summer.

MAT 108 Precalculus for Sciences
Polynomials and rational, exponential, logarithmic, and trigonometric functions. Solving equations. Graphing functions. Trigonometric identities. Credit not allowed if student already has credit for MAT 109, MAT 111, or MAT 115.
Fulfills College Core: Field 7 (Mathematical Sciences)
Offered: summer.

MAT 109 Calculus with Review I
For science and mathematics majors. Calculus, with topics from pre-calculus. Logarithmic and exponential functions, trigonometric functions, limits, differentiation. Credit not allowed if student already has credit for MAT 111 or MAT 115.
Fulfills College Core: Field 7 (Mathematical Sciences)
Offered: fall.

MAT 110 Calculus with Review II
Continuation of MAT 109. Differentiation, related rates, optimization problems, anti-differentiation, definite integral. Credit not allowed if student already has credit for MAT 111 or MAT 115.
Prerequisite: MAT 109
Offered: spring.

MAT 111 Calculus I
For science and mathematics majors. Calculus of functions of single variable. Functions, limits, differentiation, continuity, graphing, logarithm, exponential and inverse trigonometric functions, related rates, optimization problems, mean value theorem, l'Hospital's rule, anti-differentiation, definite integral. Credit not allowed if student already has credit for MAT 109 and MAT 110 or for MAT 115.
Fulfills College Core: Field 7 (Mathematical Sciences)
Offered: fall & spring.

MAT 112 Calculus II
Applications of integration, integration techniques, improper integrals, sequences, series, convergence tests, Taylor's series, applications; parametric and polar curves.
Prerequisite: minimum grade of C- in one of the following MAT 109 & MAT 110, MAT 111 or MAT 115.
Offered: fall & spring.

MAT 115 Calculus for Business
Calculus for business students. Differentiation and integration of functions of one variable. Applications, concepts, examples and problems in economics and business. Credit not allowed if student already has credit for either MAT 109 and MAT 110 or for MAT 111.
Prerequisite: 3 1/2 years of high school mathematics.
Fulfills College Core: Field 7 (Mathematical Sciences)
Offered: fall.

MAT 121 Mathematics through History
Liberal arts mathematics course. Tracing the development of mathematical ideas globally and through history, with emphasis on problem solving techniques, quantitative thinking, and deductive reasoning.
Prerequisite: 3 years of high school math or equivalent; sophomore standing or higher.
Fulfills College Core: Field 7 (Mathematical Sciences), Global Awareness
Offered: once a year.

MAT 131 Statistics for Social Sciences
A first course for majors in social or health sciences. Descriptive statistics, calculators, computer programs and introduction to inferential statistics. Credit not allowed if student already has credit for MAT 141 or MAT 351.
Prerequisite: 3 years of high school mathematics or equivalent.
Fulfills College Core: Field 7 (Mathematical Sciences)
Offered: fall & spring.

MAT 141 Inferential Statistics and Computers for Science
Elementary probability theory, descriptive statistics, hypothesis testing, estimation, correlation and regression. The computer will be used with one of the standard statistical packages. Credit not allowed if student already has credit for MAT 131 or MAT 351.
Prerequisite: 3 1/2 years of high school mathematics.
Fulfills College Core: Field 7 (Mathematical Sciences)
Offered: fall & spring.

MAT 150 Mathematics and Politics
Liberal arts course emphasizing applications of math in the social sciences. Covers topics such as voting theory, decisions made by groups, measurement of political power.
Prerequisite: 3 years of high school mathematics or equivalent.
Fulfills College Core: Field 7 (Mathematical Sciences), Justice
Offered: once a year.

MAT 161 Mathematics for Elementary Teachers
Designed to provide a solid foundation for the mathematical topics encountered in elementary schools. The primary goal is to develop a deep understanding of mathematical concepts so future teachers can teach with knowledge and confidence. The main topics are: problem solving processes and strategies, elementary set theory, the theory behind basic arithmetic, number systems, basic probability and statistics, elementary geometry.
Prerequisite: 3 years of high school mathematics or equivalent.
Fulfills College Core: Field 7 (Mathematical Sciences)
Offered: occasionally.

Please note, to receive a minor, a student must complete at least 9 credit hours of coursework distinct from their other credentials (i.e., majors, other minors). Please note that “ancillary/supporting” courses required for a major may still count as distinct courses as long as the remaining coursework still meets the 30 credit-hours required for a major.
MAT 191 Introduction to Discrete Mathematics 4 Credits
Fundamental topics with computer science applications. Sets and logic, propositional and predicate calculus, elements of combinatorics and counting, elementary discrete probability, functions and relations, and graphs.
Offered: fall.

MAT 211 Calculus III 4 Credits
Continuation of MAT 111 and MAT 112. Analytic geometry of 3-dimensional space and calculus of functions of several variables.
Prerequisite: minimum grade of C- in MAT 112.
Offered: fall & spring.

MAT 219 Linear Algebra 4 Credits
Prerequisite: MAT 112 or permission of instructor.
Offered: spring.

MAT 222 Differential Equations 3 Credits
Introduction to the theory and applications of ordinary differential equations.
Prerequisite: minimum grade of C- in MAT 211; or passing grade in MAT112 with permission of instructor.
Offered: spring.

MAT 230 Logic, Set Theory, and Proofs 4 Credits
Transition from calculus to upper division courses: logic and methods of proof; set theory; relations, orders and functions; number systems; cardinality.
Prerequisite: minimum grade of C- in MAT 112 or permission of instructor.
Offered: fall.

MAT 301 History of Mathematics 3 Credits
Development and interrelations of major areas of mathematics, from ancient to modern times. Emphasis on both historical context and mathematical content. Mathematics as cultural heritage.
Prerequisite: MAT 111 & MAT 112.
Offered: occasionally.

MAT 311 Abstract Algebra 4 Credits
Introduction to the basic structures of abstract algebra; groups, rings, fields.
Prerequisite: minimum grade of C- in both MAT 219 and MAT 230.
Offered: fall.

MAT 312 Topics in Algebra 3 Credits
Continuation of MAT 311. Selected topics from groups, rings, integral domains, field extensions and Galois theory.
Prerequisite: MAT 311.
Offered: spring of odd-numbered years.

MAT 313 Number Theory 3 Credits
Divisibility, prime numbers, numerical functions, congruencies, quadratic reciprocity, Diophantine equations.
Prerequisite: MAT 311 or permission of instructor.
Offered: occasionally.

MAT 321 Real Analysis 4 Credits
Advanced study of limits, continuity, differentiation and integration of functions.
Prerequisite: minimum grade of C- in MAT 211, MAT 219 & MAT 230.
Offered: fall.

MAT 322 Topics in Analysis 3 Credits
Continuation of MAT 321. Selected topics from functions of one or several variables.
Prerequisite: minimum grade of C- in MAT 321.
Offered: occasionally.

MAT 331 Geometry 3 Credits
Prerequisite: MAT 230.
Offered: fall of even-numbered years.

MAT 341 Numerical Analysis 3 Credits
Prerequisite: MAT 219.
Offered: occasionally.

MAT 342 Graph Theory 3 Credits
This course covers basic constructions on graphs. Complete graphs, bipartite graphs, trees, cycles, and more general graphs are studied along with their combinatorial properties. Euler circuits, Hamilton circuits, spanning trees. Applications of graphs to optimization problems such as the Traveling Salesperson Problem and Construction of the Minimal Spanning Trees.
Prerequisite: MAT 111 or MAT 115.
Offered: spring of even-numbered years.

MAT 345 Climate and Sustainability 3 Credits
This course, for majors from all the sciences, develops the use of conceptual models in understanding complicated situations, while illustrating the role of scientific arguments in societal debates about climate change and sustainability. Topics include: the Earth’s energy balance, historical data for ocean and atmosphere and temperature and their circulation and oscillation patterns, the carbon cycle and biological systems, and handling large data. The increasingly sophisticated examples explored in the course will introduce the use of various areas of mathematics: linear models and networks, calculus-based dynamical systems, statistics and data assessment, and analysis of periodic phenomena. Students will learn about these topics by seeing simple examples of their use. The last part of the course will center on sustainability issues, and connections to global awareness, diversity, ethics, and justice.
Prerequisite: MAT 111 or equivalent. Restriction: seniors only.
Fulfills College Core: Core Capstone
Offered: occasionally.

MAT 351 Probability & Statistics I 3 Credits
Introduction to the mathematical aspects of modern probability theory and the theory of statistics.
Prerequisite: MAT 211.
Offered: spring.

MAT 352 Probability & Statistics II 3 Credits
Continuation of MAT 351. Introduction to the mathematical aspects of modern probability theory and the theory of statistics.
Prerequisite: MAT351.
Offered: fall.

MAT 353 Regression Analysis 3 Credits
Linear regression and correlation. Covariance, residual sum of squares, residual variance, correlation coefficient, tests of significance for correlation coefficient and for regression coefficients. Non-linear regression.
Prerequisite: MAT 351 & MAT 352, or permission of instructor.
Offered: spring of odd-numbered years.
Mathematics Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAT 111</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>MAT 112</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>MAT 211</td>
<td>Calculus III</td>
<td>4</td>
</tr>
<tr>
<td>MAT 219</td>
<td>Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>MAT 222</td>
<td>Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>or MAT 351 Probability & Statistics I</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>MAT 230</td>
<td>Logic, Set Theory, and Proofs</td>
<td>4</td>
</tr>
<tr>
<td>MAT 311</td>
<td>Abstract Algebra</td>
<td>4</td>
</tr>
<tr>
<td>MAT 321</td>
<td>Real Analysis</td>
<td>4</td>
</tr>
</tbody>
</table>

Statistics Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAT 312</td>
<td>Probability and Statistics I</td>
<td>4</td>
</tr>
<tr>
<td>MAT 313</td>
<td>Regression</td>
<td>4</td>
</tr>
<tr>
<td>MAT 314</td>
<td>Multivariate Analysis</td>
<td>4</td>
</tr>
<tr>
<td>MAT 315</td>
<td>Statistical Inference</td>
<td>4</td>
</tr>
<tr>
<td>MAT 316</td>
<td>Advanced Statistical Methods</td>
<td>4</td>
</tr>
</tbody>
</table>

Computer Science Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAT 322</td>
<td>Computer Science I</td>
<td>4</td>
</tr>
<tr>
<td>MAT 323</td>
<td>Computer Science II</td>
<td>4</td>
</tr>
<tr>
<td>MAT 324</td>
<td>Computer Science III</td>
<td>4</td>
</tr>
<tr>
<td>MAT 325</td>
<td>Computer Science IV</td>
<td>4</td>
</tr>
<tr>
<td>MAT 326</td>
<td>Computer Science V</td>
<td>4</td>
</tr>
</tbody>
</table>

Other Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAT 327</td>
<td>Advanced Programming</td>
<td>4</td>
</tr>
<tr>
<td>MAT 328</td>
<td>Advanced Data Structures</td>
<td>4</td>
</tr>
<tr>
<td>MAT 329</td>
<td>Advanced Algorithms</td>
<td>4</td>
</tr>
<tr>
<td>MAT 330</td>
<td>Advanced Software Development</td>
<td>4</td>
</tr>
<tr>
<td>MAT 331</td>
<td>Advanced Systems Engineering</td>
<td>4</td>
</tr>
</tbody>
</table>

Mathematics (BA)

Mathematics (BA) and Adolescence Education 7-12, Teaching Students with Disabilities Generalist (MSEd)

The dual degree program offers a BA in Mathematics as well as a MSEd in Adolescence 7-12. The program is designed to prepare students to become secondary school mathematics teachers, with a focus on students with disabilities. Students will complete the requirements for both degrees, including coursework in mathematics, pedagogy, and special education.

Curriculum

An Ignatian Foundation

All undergraduate students must complete either the Canisius Core Curriculum or the All-College Honors Curriculum. These programs provide a broad foundation of knowledge and skills, and they are designed to foster critical thinking and social responsibility. The core curriculum requirements are more than a series of required classes; they provide the basis for a Jesuit education both with content and with required knowledge and skills attributes that are central to our mission.

Free Electives

Students may graduate with a bachelor's degree with more but not less than 120 credit hours. Free electives are courses in addition to the Canisius Core Curriculum or All-College Honors Curriculum and major requirements sufficient to reach the minimum number of credits required for graduation. The number of credits required to complete a bachelor's degree may vary depending on the student's major(s) and minor(s).

Major Requirements

Undergraduate Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAT 111</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>MAT 112</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>MAT 211</td>
<td>Calculus III</td>
<td>4</td>
</tr>
<tr>
<td>MAT 219</td>
<td>Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>MAT 222</td>
<td>Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>or MAT 351 Probability & Statistics I</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>MAT 230</td>
<td>Logic, Set Theory, and Proofs</td>
<td>4</td>
</tr>
<tr>
<td>MAT 311</td>
<td>Abstract Algebra</td>
<td>4</td>
</tr>
<tr>
<td>MAT 321</td>
<td>Real Analysis</td>
<td>4</td>
</tr>
</tbody>
</table>
MAT 380 Mathematics Seminar 1
MAT 381 Mathematics Seminar 1
MAT 480 Mathematics Seminar 1
Select one of the following: 3
MAT 312 Topics in Algebra
MAT 322 Topics in Analysis
MAT 352 Probability & Statistics II
MAT 421 Complex Analysis
Select four courses from the following: 12-16
Any additional 300 or 400-level mathematics courses
PHY 335 Mathematical Analysis for Physicists
PHY 446 Quantum Mechanics I
Choose one of the following two sequences: 6-8
General Physics for Physical Science Majors (PHY 201, PHY 201L, PHY 202, and PHY 202L)
Any two Economics (ECO) classes
Education Courses
EDS 101 Human Growth and Social Development: Adolescence 3
EDS 223 Foundations of Adolescent Literacy 3
EDS 360 Evaluation and Teaching Strategies 3
EDS 403 Methods of Teaching Mathematics: Adolescence 3
EDU 250 Foundations of Education 3
EDU 356 Assessment for Diverse Learners 3
SPE 311 Nature/Needs of Childhood Students with Intellectual Disabilities & Autism Spectrum Disorders 3
SPE 341 Inclusive Strategies 3
Total Credits 79-85

Please note, two math, two science, and two history courses are needed for SWD certification. Candidates also need to take 3 credit hours in a LOTE (Language other than English).

Graduate Courses
The education curriculum is provided below for the graduate MSeD portion of the dual degree program. Several foundation courses are taken at the undergraduate level listed above with the requirements for the history major. The graduate courses begin at the 500 level and continue until completion. These courses can be taken during a student’s senior year. Refer to the roadmap for further details.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDU 556</td>
<td>Assessment for Diverse Learners 1</td>
<td>3</td>
</tr>
<tr>
<td>or EDU 356</td>
<td>Assessment for Diverse Learners</td>
<td></td>
</tr>
<tr>
<td>EDU 595</td>
<td>Child Abuse Workshop</td>
<td>0</td>
</tr>
<tr>
<td>EDU 596</td>
<td>Prevention of School Violence Workshop</td>
<td>0</td>
</tr>
<tr>
<td>EDU 597</td>
<td>Dignity for All Students Workshop</td>
<td>0</td>
</tr>
<tr>
<td>EDU 615</td>
<td>Research Methods</td>
<td>3</td>
</tr>
<tr>
<td>SPE 580</td>
<td>Classroom Management</td>
<td>3</td>
</tr>
<tr>
<td>SPE 631</td>
<td>Reading and Writing Process for Students with Learning and Behavioral Disorders</td>
<td>3</td>
</tr>
<tr>
<td>SPE 640</td>
<td>Learning and Behavioral Disabilities (LBD); Etiology and Research Based Interventions</td>
<td>3</td>
</tr>
<tr>
<td>SPE 644</td>
<td>Collaborative Practices on a Transdisciplinary Team</td>
<td>3</td>
</tr>
<tr>
<td>SPE 649</td>
<td>Transition Issues for Adolescents with Disabilities</td>
<td>3</td>
</tr>
<tr>
<td>SPE 650</td>
<td>Intellectual Disabilities and Autism Spectrum Disorders: Etiology & Educational Needs 1</td>
<td>3</td>
</tr>
<tr>
<td>or SPE 311</td>
<td>Nature/Needs of Childhood Students with Intellectual Disabilities & Autism Spectrum Disorders</td>
<td></td>
</tr>
<tr>
<td>SPE 652</td>
<td>Functional Curriculum for Students with Severe Disabilities and ASD</td>
<td>3</td>
</tr>
<tr>
<td>SPE 698</td>
<td>Seminar in Teaching and Assessment</td>
<td>3</td>
</tr>
<tr>
<td>SPE 693</td>
<td>Student Teaching</td>
<td>9</td>
</tr>
<tr>
<td>SPE 697</td>
<td>Student Teaching Seminar</td>
<td>0</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>39</td>
</tr>
</tbody>
</table>

1 These courses may be taken at either the undergraduate or graduate level. The graduate level courses are recommended for those students coming into this program during their junior year.