PHYSICS - PHY

PHY 104 Seminar for Physics and Pre-engineering Majors 0 Credits
A key aspect of science is the communication of ideas. The seminar is one method of sharing scientific ideas and results. This course gathers Physics and Pre-engineering majors to learn about advances in their respective fields, about related careers, and about the research performed by the department faculty.
Prerequisite: None. Corequisite: None.
Offered: every fall & spring.

PHY 129 Introduction to Astronomy 3 Credits
Understanding modern astronomy by using ideas from basic physics. Mathematics minimized. Naming and viewing stars and constellations is included.
Fulfills College Core: Field 6 (Natural Sciences)
Offered: once a year.

PHY 130 Introductory Geology 3 Credits
For science and non-science majors alike, this course covers the fundamental concepts of physical geology, including the rock cycle; erosion; tectonic processes including earthquakes and volcanism; the importance of water from oceans to rivers to glaciers; and society's dependence on energy and mineral resources from the Earth. Our planet is an interacting system of matter and energy, giving us mountains, lowlands, oceans, rivers, earthquakes, volcanoes, and the resources we need for human prosperity.
Offered: occasionally.

PHY 131 Earthquakes: Seismology and Society 3 Credits
The science behind earthquakes: causes, locations, frequency and measurement; affects on geography, human structures and society.
Fulfills College Core: Field 6 (Natural Sciences), Global Awareness
Offered: once a year.

PHY 201L University Physics I Laboratory 1 Credit
Laboratory for University Physics I. This lab course engages students in experimental measurements spanning the areas of mechanics, with the objective of training students in experimental measurements, data manipulation and analysis, error analysis, deductive thinking, and instrumentation, providing depth to students' understanding of the phenomena taught in PHY201.
Prerequisite: MAT 110 or MAT 111. Corequisite: PHY 201.
Offered: every fall.

PHY 202 College Physics II 3 Credits
College Physics for biological-science students. Electricity and magnetism, geometrical and physical optics.
Prerequisite: minimum grade of C- in PHY 201 and 201L. Corequisite: PHY 202L.
Offered: every fall.

PHY 202L University Physics II Laboratory 1 Credit
This laboratory provides students with a greater understanding of electromagnetic phenomena, wave phenomena, and optics, and supports PHY202. Measurements of microscopic quantities, like the charge and mass of the electron, give students an opportunity to explore the structure of matter. Other experiments involve the physics of electrical currents, electric properties of bulk matter, magnetic fields and their effect on beams, wave phenomena, and the nature of light and its interaction with optical materials. This course trains students in experimental measurements, data manipulation and analysis, error analysis, deductive thinking, and instrumentation.
Prerequisite: min grade of C- in PHY 201 and 201L Corequisite: PHY 202.
Offered: every spring.

PHY 203 General Physics for Physical Science Majors I 3 Credits
Prerequisite: MAT 110 or MAT 111. Corequisite: PHY 223L.
Fulfills College Core: Field 6 (Natural Sciences)
Offered: every spring.

PHY 223L General Physics for Physical Science Majors I Laboratory 1 Credit
Laboratory for calculus-based general physics I.
Prerequisite: MAT 110 or MAT 111 Corequisite: PHY 223.
Offered: every fall.

PHY 224 General Physics for Physical Science Majors II 3 Credits
Calculus-based general physics. Electricity and magnetism, geometrical and physical optics.
Prerequisite: minimum grade of C- in PHY 223 and PHY 223L Corequisite: PHY 224L.
Offered: every spring.

PHY 224L General Physics for Physical Science Majors I Laboratory 1 Credit
Laboratory for calculus-based general physics II.
Prerequisites: min grade of C- in PHY 223 and PHY 223L Corequisite: PHY 224.
Offered: every spring.

PHY 225 General Physics for Physical Science Majors III 3 Credits
Prerequisite: PHY 202 with a minimum grade of C-, and MAT 211 which may be taken concurrently. Corequisite: PHY 225L.
Offered: every fall.

PHY 225L General Physics for Physical Science Majors III Laboratory 1 Credit
Laboratory for calculus-based general physics III.
Corequisite: PHY 225.
Offered: every fall.

PHY 226 Basic Electronics 3 Credits
Circuit analysis, power supplies, semiconductor physics, operational amplifiers, digital electronics. Integrated circuit techniques. Includes laboratory work each week.
Prerequisite: minimum grade of C- in PHY 202. Corequisite: PHY 226L.
Offered: spring.

PHY 226L Basic Electronics Laboratory 1 Credit
Laboratory for basic electronics course.
Corequisite: PHY 226.
Offered: every spring.

PHY 330 Electrodynamics I 3 Credits
Static and time-varying classical electric and magnetic fields in free-space and matter. Prior completion of or concurrent registration for PHY 335 is strongly encouraged.
Prerequisite: Minimum of C- in PHY 202.
Offered: fall of odd-numbered years.

PHY 331 Electrodynamics II 3 Credits
Primary topic: electromagnetic waves in free-space and matter, beginning with the Maxwell equations. Additional topics: radiation and special relativity.
Prerequisite: PHY 330.
Offered: spring of even-numbered years.

PHY 332 Statistical and Thermal Physics 3 Credits
Develops statistical concepts and methods used to relate macroscopic to microscopic descriptions of many particle systems.
Prerequisite: PHY 225.
Offered: spring of odd-numbered years.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Description</th>
<th>Prerequisite/Restriction</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHY 335</td>
<td>Mathematical Analysis for Physicists</td>
<td>4</td>
<td>Theory and applications of infinite series, Fourier series, Green’s functions, Fourier integrals, vector calculus, linear algebra, partial differential equations, and complex variable.</td>
<td>MAT 222 or permission of instructor.</td>
<td>fall of odd-numbered years.</td>
</tr>
<tr>
<td>PHY 350</td>
<td>Modern Physics Laboratory</td>
<td>1</td>
<td>This course covers the basic principles of 20th century modern physics. The topics include blackbody radiation, particle/wave duality, x-ray diffraction, Bohr’s model of the atom, quantum tunneling, and the Schrodinger equation.</td>
<td>PHY 225.</td>
<td>every fall.</td>
</tr>
<tr>
<td>PHY 351</td>
<td>Advanced Laboratory</td>
<td>1</td>
<td>This course emphasizes advanced experiments and experimental technique. Topics include, but are not restricted to, dosimetry, radiation detection, gamma-ray spectroscopy, Rutherford scattering, atomic spectroscopy, thin-film deposition, and magnetic resonance.</td>
<td>PHY 225.</td>
<td>every spring.</td>
</tr>
<tr>
<td>PHY 443</td>
<td>Classical Mechanics</td>
<td>3</td>
<td>One, two, and three dimensional motion of a particle, non-inertial systems, classical scattering, rigid-body motion. Lagrange and Hamilton equations, calculus of variations, oscillations.</td>
<td>PHY 225 & MAT 222.</td>
<td>fall of even-numbered years.</td>
</tr>
<tr>
<td>PHY 445</td>
<td>Special Topics in Physics</td>
<td>1</td>
<td>This course will cover model formation and development using archival journal articles in physics. The subject material will rotate by semester among topics such as astrophysics, quantum theory, and thermodynamics. Students will be expected to read and critique journal articles, lead discussions on journal articles, and trace the development of an area of physics through assigned readings.</td>
<td>permission of instructor.</td>
<td>spring of odd-numbered years.</td>
</tr>
<tr>
<td>PHY 446</td>
<td>Quantum Mechanics I</td>
<td>4</td>
<td>Experimental basis of quantum mechanics, state functions, operators. Review of linear algebra techniques and introduction of the Dirac notation.</td>
<td>PHY 225 & MAT 222.</td>
<td>fall of even-numbered years.</td>
</tr>
<tr>
<td>PHY 447</td>
<td>Quantum Mechanics II</td>
<td>3</td>
<td>Application of Schrödinger’s equation, Hamiltonian mechanics, angular momentum, intrinsic spin, parity, and time-dependent quantum mechanics.</td>
<td>PHY 446.</td>
<td>spring of odd-numbered years.</td>
</tr>
<tr>
<td>PHY 449</td>
<td>Nuclear Physics Lab</td>
<td>1</td>
<td>Introduction to experimental nuclear physics. Experiments study nuclear instrumentation, characteristics of radiation and nuclear spectra.</td>
<td>PHY 446.</td>
<td>occasionally.</td>
</tr>
</tbody>
</table>